Атмосфера земли
Содержание:
- Из чего ещё состоит атмосфера Земли
- Строение атмосферы Земли
- Зависимость температуры воздуха от географической широты
- Стихийные бедствия
- Примечания[ | ]
- Стратосфера — второй слой атмосферы
- Биосфера и ее границы
- Граница атмосферы[править | править код]
- Примечания
- Общие сведения
- Ионизация
- История образования атмосферы
- Водяной пар в атмосфере
- Презентация на тему: » Атмосфера (от греч. слов «атмос»-пар и «сфера»-шар)-это воздушная оболочка Земли. Толщина атмосферы 3000 км, выделяют слои: от 7 до 18 км-тропосфера(от.» — Транскрипт:
- Как формировалась атмосфера?
- Состав атмосферы
- Что такое атмосфера
Из чего ещё состоит атмосфера Земли
Помимо территориальных воздушных земельных слоев, различают ионосферу и нейтросферу. Они делятся по электрическим свойствам. Как уже было сказано, ионосфера преимущественно находится в термосфере. И связана она с ионизацией воздуха.
Но что такое нейтросфера понятно не всем. Проще говоря, это нижняя часть атмосферного слоя. В ней преобладают незаряженные частицы воздуха Земли.
Прорыв через атмосферу
Более того, в окружающей нас воздушной оболочке, учёные выделили две области:
1) Гетеросфера — участок, где силы гравитации влияют на газы. Таким образом происходит их небольшое перемешивание. По этой причине состав гетеросферы переменный.2) Гомосфера — область под гетеросферой, где отмечают сильно перемешанные газы. Поэтому состав однородный.
Вдобавок существует граница между этими зонами. Её называют турбопаузой. Её территория простирается на высоте 120 км.
Как видно, атмосфера планеты Земля довольно интересная по своей структуре. Хотя нельзя сказать, что прямо сложная. По всей вероятности, мы её довольно хорошо изучили. Но Вселенная и природа всегда преподносят нам сюрпризы.
Строение атмосферы Земли
Глядя на небо, особенно когда оно совершенно безоблачно, очень сложно даже предположить, что оно имеет такую сложную и многослойную структуру, что температура там на различных высотах очень сильно отличается, и что именно там, в высоте, происходят важнейшие процессы для всей флоры и фауны на Земле.
Если бы не такой сложный состав газового покрова планеты, то здесь бы просто не было никакой жизни и даже возможности для ее зарождения.
Первые попытки изучить эту часть окружающего мира были предприняты еще древними греками, но те не могли зайти в своих умозаключениях слишком далеко, так как не обладали необходимой технической базой. Они не видели границы разных слоев, не могли измерить их температуру, изучить компонентный состав и т. д.
В основном только погодные явления наталкивали самые прогрессивные умы на размышления о том, что видимое небо не такое простое, как кажется.
Считается, что структура современной газовой оболочки вокруг Земли образовалась в три этапа. Сначала была первичная атмосфера из водорода и гелия, захваченных из космического пространства.
Потом извержение вулканов наполнило воздух массой других частиц, и возникла вторичная атмосфера. После прохождения всех основных химических реакций и процессов релаксации частиц, возникла нынешняя ситуация.
Зависимость температуры воздуха от географической широты
Мы уже отметили, что распределение солнечной радиации по территории Земли определяется многими факторами. Температура воздуха может меняться на протяжении суток и по сезонам года, а также она зависит от географической широты территории.
Рассмотреть изменение температуры с широтой мы можем с помощью ниже приведенной карты.
По карте хорошо видно, что температура на разных широтах различается. От полюсов к экватору наблюдается уменьшение среднегодовых температур. Изображенные среднегодовые изотермы не совмещаются с параллелями. Например, изотерма 0С достигает над сушей широты 40С, образуя «волны холода», а над океанами заходит за полярный круг, образуя «волны тепла». Почему же так получается, что на одной широте разные температуры?
Такое отклонение изотерм вызвано неодинаковыми условиями прогрева и охлаждения суши и моря, влияниями различных течений и господствующими ветрами.
В любом случае можно проследить определенную зависимость температуры от географической широты. В области экватора наблюдаются высочайшие температуры, для умеренных широт характерны средние значения от +10С до -10С. Температура на полюсах очень низкая от -10С до -40С.
Солнечная радиация неравномерно распределяется по территории Земли, что связано с ее вращением вокруг своей оси и вокруг Солнца. Следствием этого является различие температуры воздуха по широтам. Там где поступает большое количество тепла, например область экватора, характерны высокие температуры и наоборот. Поэтому принято выделять пояса освещенности.
Пояса освещенности Земли
Внимательно изучив карту, мы можем сказать – сколько поясов освещённости можно выделить.
Существует семь поясов освещенности: жаркий, два умеренных, два холодных и два вечного мороза. Границы поясов освещенности проходят по параллелям.
В области экватора простирается жаркий пояс освещенности, который захватывает и тропические широты. С обеих сторон проходят изотермы +20С.
Выделяют по обеим сторонам от экватора – умеренные пояса освещенности. По тропикам проходит изотерма +20С, а по полярным кругам +10С.
Холодными поясами принято считать области за полярным кругом, расположенные между изотермами +10С и 0С. На суше это зоны тундры.
Какие пояса освещенности считаются наиболее холодными? Это две области вечного мороза, расположенные на полюсах.
Для каждого пояса освещенности существует свой температурный режим. Все это определяет различие природных условий между поясами.
Стихийные бедствия
Вы уже прочитали о таких опасных природных явлениях, как землетрясения и извержения вулканов, которые иногда уносили тысячи человеческих жизней. Их нередко называют стихийными бедствиями
Некоторые атмосферные явления тоже довольно часто попадают в эту категорию, поэтому, чтобы не подвергать себя опасности, надо помнить об элементарных мерах предосторожности. «Люблю грозу в начале мая…» Но большинство людей всё-таки инстинктивно побаиваются этого природного явления
Раньше верили, что опасен сам гром. Не зря главные боги во многих религиях считались громовержцами. Поэтому устройство, отводящее во время грозы электрические разряды в землю, назвали громоотводом.
Молния
Однако на самом деле опасаться следует не грома, а мощного электрического разряда — молнии. Молния всегда ищет выступающие над землёй объекты — высокие здания, большие деревья и даже людей. Поэтому прятаться от грозы под деревьями или в воде нельзя. Иногда во время грозы через открытое окно может с тихим шипением вплыть загадочная и очень опасная шаровая молния. Учёные до сих пор не могут прийти к единому мнению о том, как она образуется. Если шаровая молния проникла в помещение, не прикасайтесь к железным предметам; не пробуйте убежать от неё; не пытайтесь выгнать её веником, книгой и т. д.; стойте, не двигаясь, сохраняйте спокойствие.
А вот град может за несколько минут не только полностью уничтожить урожай, но и нанести увечья людям и животным, ведь ледяные градины иногда достигают размера 13 см в диаметре и массы около килограмма. Обычная метель иногда коварно перерастает в многочасовой, если не многодневный снежный буран, подобный тому, который погубил антарктическую экспедицию Роберта Скотта.
В низких широтах над океанами часто зарождаются тропические циклоны с ветрами страшной разрушительной силы — ураганы, как их называют в Атлантическом океане и на востоке Тихого океана. У побережья Евразии чаще используют китайское слово «тайфун», что означает «большой ветер». При урагане ветер движется по кругу, а сила его так велика, что он с лёгкостью срывает крыши с домов и вырывает с корнем деревья. Иногда при столкновении двух воздушных масс, температура и влажность которых резко отличается, возникает воронка — смерч, похожий на изогнутый извивающийся хобот слона, спускающийся из грозового облака и шарящий по земле. Смерч, как гигантский пылесос, всасывает всё, что попадается на пути. Сто лет назад смерч, проходя над районом Сокольники на окраине Москвы, перенёс на несколько сотен метров корову, которая совсем не пострадала и продолжила пастись. Особенно часты смерчи, или торнадо, как их называют на равнинах, расположенных между Скалистыми горами и Аппалачами в Северной Америке. Вспомните историю девочки Элли, чей домик торнадо перенёс в Волшебную страну Оз.
Смерч
Примечания[ | ]
- Будыко М. И., Кондратьев К. Я. Атмосфера Земли // Большая советская энциклопедия. 3-е изд. / Гл. ред. А. М. Прохоров. — М.: Советская Энциклопедия, 1970. — Т. 2. Ангола — Барзас. — С. 380—384.
- ↑ 12Hay W. W. Experimenting on a Small Planet: A History of Scientific Discoveries, a Future of Climate Change and Global Warming. — 2nd ed. — Springer, 2021. — P. 426. — 819 p. — ISBN 9783319274041.
- ↑ 12 100km altitude boundary for astronautics // FAI ASTRONAUTIC RECORDS COMMISSION (ICARE)
- Thompson A. Edge of Space Found (англ.). space.com (9 April 2009). Дата обращения: 19 июня 2021. Архивировано 5 февраля 2021 года.
- Encrenaz T., Bibring J.-P., Blanc M., Barucci M.-A., Roques F., Zarka P. The Solar System. — 3rd ed. — Springer Science & Business Media, 2004. — P. 219. — 514 p. — ISBN 9783662104033.
- Saha K. The Earth’s Atmosphere: Its Physics and Dynamics. — Springer Science & Business Media, 2008. — P. 10. — 367 p. — ISBN 9783540784272.
- Trends in Atmospheric Carbon Dioxide. Recent Global CO2 (неопр.) . Earth System Research Laboratory. Global Greenhouse Gas Reference Network. Дата обращения: 6 февраля 2021.
- при 0,03 % по объему
- IPCC TAR table 6.1 (англ.) (на 1998).
- Хромов С. П. Влажность воздуха // Большая советская энциклопедия. 3-е изд. / Гл. ред. А. М. Прохоров. — М.: Советская Энциклопедия, 1971. — Т. 5. Вешин — Газли. — С. 149.
- Dr. Tony Phillips. A Puzzling Collapse Of Earth’s Upper Atmosphere (англ.). SpaceDaily (16 July 2010). Дата обращения: 19 июня 2021.
- Baliukin I. I. et al. SWAN/SOHO Lyman‐α Mapping: The Hydrogen Geocorona Extends Well Beyond the Moon // Journal of Geophysical Research: Space Physics. — 2021. — doi:10.1029/2018JA026136.
Стратосфера — второй слой атмосферы
Стратосфера — это второй по счету слой земной атмосферы. Тропосфера, самый нижний слой, находится прямо под стратосферой. Следующим более высоким слоем над стратосферой является мезосфера.
Низ этого слоя находится в 10 км над землей в средних широтах. Верхняя граница стратосферы простираеся до высоты 50 км. Высота нижней границы стратосферы изменяется в зависимости от широты и времени года и может достигать 20 км вблизи экватора и всего 7 км у полюсов зимой. Нижняя граница стратосферы называется тропопаузой; верхняя граница называется стратопаузой.
Озон, особая форма молекулы кислорода, относительно распространенный в стратосфере, способствует нагреванию этого слоя, поскольку поглощает энергию поступающего ультрафиолетового излучения Солнца. Температура поднимается по мере продвижения вверх через стратосферу. Это прямо противоположно поведению в тропосфере, в которой мы живем, где температура падает с увеличением высоты. Из-за этой температурной вариации в стратосфере наблюдается очень небольшая конвекция и перемешивание, поэтому слои воздуха там довольно стабильны. Коммерческие самолеты летают в нижней стратосфере, чтобы избежать турбулентности, которая распространена в нижнем слое — тропосфере.
Стратосфера очень сухая; воздух там содержит мало водяного пара. Из-за этого в этом слое мало облаков; почти все облака встречаются в нижней, более влажной тропосфере. Полярные стратосферные облака (ПСО) являются исключением. ПСО появляются в нижней стратосфере вблизи полюсов зимой. Они обнаруживаются на высотах от 15 до 25 км и образуются только тогда, когда температура на этих высотах опускается ниже -78 °C. По-видимому, они способствуют образованию печально известных дыр в озоновом слое путем «поощрения» определенных химических реакций, которые разрушают озон. ПСО также называют перламутровыми облаками.
Полярные стратосферные облака
Воздух в верхней части стратосферы примерно в тысячу раз более разряжен, чем на уровне моря. Из-за этого реактивные самолеты и метеозонды достигают своих максимальных эксплуатационных высот именно в стратосфере.
Из-за отсутствия вертикальной конвекции в стратосфере материалы, которые попадают в этот слой, могут оставаться там в течение длительного времени. Так обстоит дело с озоноразрушающими химическими веществами, называемыми хлорфторуглеродами (фреонами).
Хлорфторуглероды (CFC) — это нетоксичные, негорючие химические вещества, содержащие атомы углерода, хлора и фтора. Они используются в производстве аэрозольных баллончиков, вспенивателей для различных веществ и упаковочных материалов, в качестве растворителей и хладагентов.
Сильные извержения вулканов и сильные воздействия метеоритов могут выбросить аэрозольные частицы в стратосферу, где они могут задерживаться на месяцы или годы, иногда изменяя глобальный климат Земли. Выхлопы ракетных двигателей также попадают в стратосферу, что приводит к неопределенным последствиям.
В стратосфере встречается редкий тип электрического разряда, несколько похожий на молнию. Эти «синие струи» (blue jets) появляются над грозами и простираются от нижней части стратосферы до высот 40 или 50 км.
Синие струи – тип молнии, который вы, возможно, видели, но не знали об этом. Особенно если вам приходится много летать на самолетах. Эти разряды выстреливают вверх из грозовых туч и длятся лишь долю секунды. По мере распространения вверх они постепенно расширяются с углом раствора порядка 15 градусов. Их свечение постепенно сходит на нет на высоте около 40—50 километров. Синие струи намного ярче спрайтов, обладают другим цветом, но наблюдаются значительно реже. Ранее считалось, что они не связаны напрямую с обычными тропосферными молниями, но сегодня ученые склоняются в сторону существования подобной зависимости.
Гигантская синяя струя над Китаем, август 2016 г.
Биосфера и ее границы
Биосфера — это оболочка Земли, состав, структура и энергетика которой определяются прошлой и современной деятельностью живых организмов.
■ Термин «биосфера» ввел Э. Зюсс (Австрия, 1875 г.), учение о биосфере было создано В.И. Вернадским (Россия, 1926 г.).
■ Биосфера — наиболее крупная экосистема, объединяющая все биогеоценозы планеты и осуществляющая глобальный круговорот веществ.
Компоненты биосферы: живое вещество (см. ниже), биогенное вещество, биокосное вещество, косное вещество, радиоактивное вещество, космогенное вещество.
Биогенное вещество — соединения и полезные ископаемые, создаваемые и перерабатываемые живыми организмами в процессе их жизнедеятельности (нефть, газ, уголь, известняк и др.).
Биокосное вещество — вещество, образующееся в результате совместной деятельности живых организмов и абиогенных процессов (почва, грунт водоемов).
Косное вещество — соединения, образующиеся без участия живых организмов (горные породы, минералы и др.).
Радиоактивное вещество — радиоактивные руды и конечные продукты их распада.
Космогенное вещество — метеориты, космическая пыль.
Область жизни определяется наличием условий, необходимых для существования тех или иных живых организмов.
Жизнь на Земле распространена в трех геологических оболочках — атмосфере, гидросфере и литосфере. Эти оболочки объединены в единую целостную систему посредством непрерывного обмена друг с другом веществом и энергией, обусловленного не только абиогенными процессами, но и деятельностью живых организмов.
Атмосфера — воздушная оболочка Земли. Плотность воздуха быстро уменьшается с высотой: 75% массы атмосферы сосредоточено в слое ниже 10 км, 90% — ниже 15 км, 99% — ниже 30 км. Сухой воздух состоит из азота (78,08%), кислорода (20,95%), аргона (0,93%), углекислого газа (0,03%) и примесей других газов.
Тропосфера — нижний слой атмосферы высотой от 8-10 км в полярных широтах до 16-18 км в экваториальной зоне. Выше тропосферы расположена стратосфера.
Озоновый слой — область с повышенным содержанием озона О3 — находится в стратосфере на высотах 15-25 км. Он поглощает губительное для живых организмов коротковолновое ультрафиолетовое излучение Солнца.
Водяной пар, присутствующий в атмосфере, участвует в природном круговороте воды;
■ конденсируясь, он выпадает в виде дождей, обеспечивая влажностный режим земных территорий;
■ вместе с СО2 он вносит главный вклад в парниковый эффект: удерживает отраженные от поверхности планеты длинноволновые тепловые лучи, благодаря чему нижние слои атмосферы оказываются теплыми.
Гидросфера — это водная оболочка Земли, образованная водами ее океанов, морей, озер, рек, подземных и ледяных покровов.
■ Средняя глубина Мирового океана — 3,8 км, максимальная (Марианская впадина в Тихом океане) — 11,034 км. 97% массы гидросферы составляют соленые океанические воды, 2,2% — воды ледников, 0,8% — подземные, озерные и речные пресные воды.
Литосфера — внешняя твердая оболочка (кора) планеты. Состоит из трех слоев: верхнего — слоя осадочных пород, среднего -гранитного и нижнего, наиболее плотного — базальтового.
Границы биосферы проходят там, где начинают преобладать природные факторы, делающие существование живых организмов невозможным.
Верхняя граница биосферы определяется высокой интенсивностью ультрафиолетового солнечного излучения, низкой температурой среды, дефицитом кислорода и воды и проходит в атмосфере на высоте 25-27 км (у нижней границы озонового слоя).
■ Отдельные споры бактерий и грибов найдены в тропосфере на высоте до 40 км.
Нижняя граница биосферы в литосфере для большинства форм жизни определяется высокой плотностью, прочностью и высокой сопротивляемостью среды, отсутствием света, недостатком кислорода и проходит на глубине нескольких десятков метров.
■ Неактивные формы жизни (споры, цисты) и нефтебактерии зарегистрированы на глубинах до 4 км. Эта граница, помимо перечисленных выше факторов, определяется также высокими давлением и температурой горных пород и подземных вод (на глубине 3 км температура около +100 °С).
В гидросфере жизнь простирается на всю глубину Мирового океана. Здесь ограничивающими факторами являются давление толщи воды и отсутствие света (температура воды на дне океанических впадин — около 0 °С).
■ По В.И. Вернадскому, нижняя граница биосферы проходит на 1-2 км глубже дна Мирового океана, в постепенно накапливающейся в океане толще осадочных пород, происхождение которых связано с деятельностью живых организмов.
Граница атмосферы[править | править код]
Атмосферой принято считать ту область вокруг Земли, в которой газовая среда вращается вместе с Землёй как единое целое. Атмосфера переходит в межпланетное пространство постепенно, в экзосфере, начинающейся на высоте 500—1000 км от поверхности Земли.
По определению, предложенному Международной авиационной федерацией, граница атмосферы и космоса проводится по линии Кармана, расположенной на высоте 100 км, выше которой авиационные полёты становятся полностью невозможными. NASA использует в качестве границы атмосферы отметку в 122 километра (400 000 футов), где «шаттлы» переключались с маневрирования с помощью двигателей на аэродинамическое маневрирование.
Атмосфера Земли (снимок с МКС, 2006). На больших высотах атмосфера становится очень разрежённой, так что её присутствием можно пренебречь.
Примечания
- Будыко М. И., Кондратьев К. Я. Атмосфера Земли // Большая советская энциклопедия. 3-е изд. / Гл. ред. А. М. Прохоров. — М.: Советская Энциклопедия, 1970. — Т. 2. Ангола — Барзас. — С. 380—384.
- ↑
- ↑
- Thompson A. (англ.). space.com (9 April 2009). Дата обращения: 19 июня 2017.
- . Earth System Research Laboratory. Global Greenhouse Gas Reference Network. Дата обращения: 6 февраля 2017.
- при 0,03 % по объему
- Хромов С. П. Влажность воздуха // Большая советская энциклопедия. 3-е изд. / Гл. ред. А. М. Прохоров. — М.: Советская Энциклопедия, 1971. — Т. 5. Вешин — Газли. — С. 149.
- Dr. Tony Phillips. (англ.). SpaceDaily (16 July 2010). Дата обращения: 19 июня 2017.
Общие сведения
Под термином «атмосфера» понимают газовый слой, который окутывает нашу планету и многие другие небесные тела во Вселенной. Он образует оболочку, которая возвышается над Землей на несколько сотен километров. В составе присутствуют разнообразные газы, основным из которых является кислород.
Атмосфера характеризуется:
- Неоднородностью с физической точки зрения.
- Повышенной динамичностью.
- Зависимостью от биологических факторов (высокая уязвимость в случае неблагоприятных явлений).
Основное влияние оказывают на состав и процессы его изменяющие, живые существа (включая, микроорганизмы). Эти процессы продолжаются с момента возникновения атмосферы – несколько миллиардов лет. Защитная оболочка планеты соприкасается с такими образованиями, как литосфера и гидросфера, верхние же границы определить с высокой точность сложно, ученые могут назвать только примерные значения. Атмосфера переходит в межпланетное пространство в экзосфере – на высоте
500-1000 км от поверхности нашей планеты, некоторые источники называют цифру в 3000 км.
Значение атмосферы для жизни на земле велико, так как она предохраняет планету от столкновения с космическими телами, обеспечивает оптимальные показатели для формирования и развития жизни в различных ее формах.
Состав защитной оболочки:
- Азот – 78%.
- Кислород – 20,9%.
- Смесь газовая – 1,1% (эта часть образована такими веществами, как озон, аргон, неон, гелий, метан, криптон, водород, ксенон, углекислый газ, водяные пары).
Газовая смесь выполняет важную функцию – поглощение излишнего количества солнечной энергии. Состав атмосферы изменяются в зависимости от высоты – на высоте 65 км от поверхности Земли азота в ней будет содержаться
уже 86%, кислорода – всего 19%.
Состав атмосферы
Ионизация
Ионизация атмосферы вызывается солнечным излучением, в частности, гамма, рентгеновским и ультрафиолетовым излучениями, поэтому граница ионосферы меняется в течение суток.
В течение дня ионизированный воздух образуется в нижних слоях атмосферы. Короткие радиоволны от этих слоев отражаются, поэтому не могут распространяться на большие расстояния. По этой причине днем слышно так мало радиостанций, работающих в этом диапазоне. Ночью, когда граница ионосферы поднимается высоко, радиоволны отражаются от высших слоев и могут распространяться на большие расстояния.
Именно из-за ионизации радиоволны распространяются по разному в течение суток.
История образования атмосферы
Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера (около четырех миллиардов лет назад). На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком , водяным паром). Так образовалась вторичная атмосфера (около трех миллиардов лет до наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:
- утечка легких газов (водорода и гелия) в межпланетное пространство ;
- химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.
Постепенно эти факторы привели к образованию третичной атмосферы, характеризующейся гораздо меньшим содержанием водорода и гораздо большим — азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).
Азот
Образование большого количества азота N 2 обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N 2 выделяется в атмосферу в результате денитрификации нитратов и других азотсодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.
Азот N 2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, т. н. сидератами.
Кислород
Состав атмосферы начал радикально меняться с появлением на Земле живых организмов , в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений — аммиака, углеводородов, закисной формы железа , содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере , литосфере и биосфере , это событие получило название Кислородная катастрофа .
Загрязнение атмосферы
В последнее время на эволюцию атмосферы стал оказывать влияние человек . Результатом его деятельности стал постоянный значительный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО 2 потребляются при фотосинтезе и поглощаются мировым океаном. Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО 2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 200-300 лет количество СО 2 в атмосфере удвоится и может привести к глобальным изменениям климата .
Сжигание топлива — основной источник и загрязняющих газов (СО , , SO 2). Диоксид серы окисляется кислородом воздуха до SO 3 в верхних слоях атмосферы, который в свою очередь взаимодействует с парами воды и аммиака, а образующиеся при этом серная кислота (Н 2 SO 4) и сульфат аммония ((NH 4) 2 SO 4) возвращаются на поверхность Земли в виде т. н. кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец Pb(CH 3 CH 2) 4)).
Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капель морской воды и пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу — одна из возможных причин изменений климата планеты.
Водяной пар в атмосфере
Эту тему лучше прочитать вдумчиво, воображая происходящее
В атмосфере присутствует водяной пар (маленькие частички воды испарившиеся с поверхности водоемов и суши)
От чего зависит испарение:
-
Температура (чем выше температура, тем больше воды испариться, следовательно будет больше водяного пара в атмосфере)
-
Ветра (чем сильнее ветер, тем выше испарение)
-
Рельефа
Чем больше температура — тем больше абсолютная влажность (тем больше водяного пара)
Подсказка!
-
При равном значении температуры: растет относительная влажность и растет количество водяного пара
-
При равном значении водяного пара: растет температура, уменьшается относительная влажность.
-
При равном значении относительной влажности: растет количество водяного пара и растет температура.
Презентация на тему: » Атмосфера (от греч. слов «атмос»-пар и «сфера»-шар)-это воздушная оболочка Земли. Толщина атмосферы 3000 км, выделяют слои: от 7 до 18 км-тропосфера(от.» — Транскрипт:
2
Атмосфера (от греч. слов «атмос»-пар и «сфера»-шар)-это воздушная оболочка Земли. Толщина атмосферы 3000 км, выделяют слои: от 7 до 18 км-тропосфера(от греч. слова «тропос»-поворот. изменение), до 50 км- стратосфера(от греч. слова «стратос»-слой), до 85 км-мезосфера, до 300 км-ионосфера, выше экзосфера. Атмосфера поддерживает нужную для жизни температуру над поверхностью планеты. Кроме того она защищает всё живое от вредоносных солнечных лучей. Атмосфера-важнейшее условие жизни на Земле.
3
1%-другие газы 21%- кислород 78%-азотСтроение атмосферы
4
Атмосферные осадки. Атмосферные осадки-это вода в жидком или твёрдом состоянии выпадающая из облаков(дождь, град, снег) или осаждающаяся на поверхность Земли(роса, иней, изморозь) в результате конденсации водяного пара из воздуха. Количество осадков зависит от влажности воздуха.
5
Облачность. Облачность-это скопление водяных капель и кристаллов в атмосфере. При движении вверх слои воздуха остывают, происходит конденсация водяного пара и образование облаков. Облачность измеряют в баллах(от 0-ясно, до 10- сплошная облачность).
6
Солнечная атмосфера. Хорошо заметна во время полного затемнения, — источник непрерывно выбрасываемых в окружающее пространство заряжённых частиц.
7
Парниковый эффект. Эффект возникающий при теплообмене Земли с космическим пространством. Атмосфера пропускает к Земле солнечную радиацию, поглощая длинноволновое излучение земной поверхности. Нагретая таким образом атмосфера часть тепла возвращает Земле, компенсируя потерю тепла земной поверхностью. Парниковый эффект возрастает при увеличении в атмосфере количества углекислого газа и водяного пара.
8
Атмосфера- важнейшее условие жизни на Земле. Появление других газов, особенно вредных, в атмосфере очень не желательно. А их выпускают в атмосферу промышленные предприятия. Во многих городах загрязнение атмосферы стало вызывать опасение за здоровье людей. Охрана атмосферы- одна из важнейших задач человека. Появление других газов, особенно вредных, в атмосфере очень не желательно. А их выпускают в атмосферу промышленные предприятия. Во многих городах загрязнение атмосферы стало вызывать опасение за здоровье людей. Охрана атмосферы- одна из важнейших задач человека.
9
Проверь себя. 1.От каких греческих слов произошло слово атмосфера и что они обозначают? 2.Расскажите из чего состоит атмосфера? 3.От чего зависит количество осадков? 4.Что такое облачность? 5.Как возникает парниковый эффект?
Как формировалась атмосфера?
- Дата
- Категория: Погода и климат
Формирование атмосферы. Сегодня атмосфера Земли представляет собой смесь газов — 78% азота, 21% кислорода и небольшого количества других газов,— например, двуокиси углерода. Но когда планета только возникла, в атмосфере не было кислорода — она состояла из газов, первоначально существовавших в Солнечной системе.
Земля возникла, когда небольшие каменные тела, состоящие из пыли и газа солнечной туманности и известные как планетоиды, сталкивались друг с другом и постепенно принимали форму планеты. По мере ее роста газы, заключенные в планетоидах, вырывались наружу и окутывали земной шар. Через некоторое время первые растения начали выделять кислород, и первозданная атмосфера развилась в нынешнюю плотную воздушную оболочку.
Зарождение атмосферы
- Дождь из мелких планетоидов обрушился на зарождающуюся Землю 4,6 миллиарда лет назад. Газы солнечной туманности, заключенные внутри планеты, при столкновении вырвались наружу и образовали примитивную атмосферу Земли, состоящую из азота, двуокиси углерода и водяного пара.
- Тепло, выделяющееся при образовании планеты, удерживается слоем плотных облаков первозданной атмосферы. «Парниковые газы» — такие, как двуокись углерода и водяной пар — останавливают излучение тепла в космос. Поверхность Земли залита бурлящим морем расплавленной магмы.
- Когда столкновения планетоидов стали не такими частыми, Земля начала охлаждаться и появились океаны. Водяной пар конденсируется из густых облаков, и дождь, продолжающийся несколько эпох, постепенно заливает низменности. Таким образом появляются первые моря.
- Воздух очищается по мере того, как водяной пар конденсируется и образует океаны. С течением времени в них растворяется двуокись углерода, и в атмосфере теперь преобладает азот. Из-за отсутствия кислорода не образуется защитный озоновый слой, и ультрафиолетовые солнечные лучи беспрепятственно достигают земной поверхности.
- Жизнь появляется в древних океанах в течение первого миллиарда лет. Простейшие сине-зеленые водоросли защищены от ультрафиолета морской водой. Они используют для производства энергии солнечный свет и двуокись углерода, при этом в качестве побочного продукта выделяется кислород, который начинает постепенно накапливаться в атмосфере.
- Миллиарды лет спустя формируется богатая кислородом атмосфера. Фотохимические реакции в верхних атмосферных слоях создают тонкий слой озона, который рассеивает вредный ультрафиолетовый свет. Теперь жизнь может выйти из океанов на сушу, где в результате эволюции возникает множество сложных организмов.
Миллиарды лет назад толстый слой примитивных водорослей начал выделять в атмосферу кислород. Они сохранились до сегодняшнего дня в виде окаменелостей, которые называются строматолитами.
Вулканическое происхождение
1. Древняя, безвоздушная Земля. 2. Извержение газов.
Согласно этой теории, на поверхности юной планеты Земля активно извергались вулканы. Ранняя атмосфера, вероятно, сформировалась тогда, когда газы, заключенные в кремниевой оболочке планеты, вырвались наружу через сопла вулканов.
Состав атмосферы
Атмосфера состоит из воздуха, который в свою очередь состоит из газов. Атмосферный воздух состоит из азота (78%), кислорода (21%), другие газы (1%). Другие газы это углекислый, гелий, пары, озон, криптон, ксеон, аргон и другие. Сам воздух обладает свойствами: прозрачен, без цвета и запаха, не видим, поддерживает горение, хорошо сжимаем и упруг.
Общая циркуляция воздуха в атмосфере
Слои
Название слоя | Расстояние в км | Особенности |
---|---|---|
Экзосфера | плавный переход в космос | магнитные бури. |
Термосфера | до 800 | хорошо проводит электричество. Здесь формируется северное сияние. |
Мезосфера | до 80 | Разреженный воздух. Серебристые облака. |
Стратосфера | до 55 | Нет пара — не образуются облака. Ураганные ветры. Перламутровые облака. |
Тропосфера (*) | над экватором — до 18. Над полюсами — до 9 | Образуются облака. Формируются явления природы. |
Тропосфера содержит 80% массы воздуха. Температура в ней снижается снизу вверх. Каждый километр понижает температуру воздуха на 6 градусов. Здесь происходит движение воздуха (ветер), формирование погодных явлений, формирование облаков и так далее. Все то, что мы называем погодой зарождается и происходит именно в тропосфере. Часто говорят, что «Тропосфера — кухня природы».
Снижение температуры происходит до мезосферы включительно. Дальше воздух начинает нагреваться, причем очень сильно. На высоте 550 км температура воздуха составляет +1500 градусов.
Атмосфера, ее строение и слои
Что такое атмосфера
Это газовая оболочка, которая окружает небесные тела. Атмосфера – не прерогатива Земли. В Солнечной системе газовый слой присутствует у всех планет. Исключение составляет только Меркурий. Особенно толстый слой атмосферы окружает так называемые газовые планеты. Удерживается она за счет силы притяжения.
Планета Земля (Фото из открытого источника)
Определить на глаз, что конкретно в этом месте заканчивается слой атмосферы и начинается межпланетное пространство, невозможно.
По сути, получается крепкая единая связка.
Поскольку речь в статье идет о земной атмосфере, рассмотрим подробно ее строение. Газовая оболочка не однородна, ученые выделяют отдельные слои. Каждый играет собственную роль и отличается составом.