Как космос изменит человечество в будущем?

Карл Саган в поисках внеземных существ

«Какова бы ни была причина того, что вы находитесь на Марсе, я рад, что вы здесь, и желал бы быть с вами».

Такая надпись нанесена на памятник, который можно найти на красной планете, если, оказавшись на ней, вбить координаты 19°20′ с. ш., 33°33′ з. д.

Мемориальная станция Карла Сагана на Марсе. Фото сделано марсоходом Соджорнер

(Фото: nasa.gov)

Собственно, само это место известно под названием «Мемориальная станция Карла Сагана», то есть посвящена человеку, который всю жизнь соблазнял человечество на масштабные космические миссии для поисках внеземной жизни и дальнейшей экспансии

Карл Саган сумел удачно совместить в себе рассудочную строгость ученого с романтическим стремлением донести как можно большему количеству людей богатство научного мира и важность исследований космоса

С одной стороны, когда он оказался частью проектов NАSА по исследованию планет Солнечной системы, то сумел решить загадку высокой температуры на Венере. Также ученый объяснил цвет Титана и понял, с чем связаны сезонные изменения на поверхности Марса.

С другой стороны, Саган со страстью отдавался и проектам, граничащими с визионерством. В частности, вместе с советским астрономом Иосифом Шкловским ученый создал программу SETI (Search for Extraterrestrial Intelligence) — масштабный проект, посвященный поиску радиосигналов внеземных цивилизаций. И если Шкловский уже в 70-е годы в проекте разочаровался (см. его статью «О возможной уникальности разумной жизни во Вселенной»), то Саган до конца жизни продолжал верить, что внеземной сигнал будет пойман.

Но, пожалуй, самой значимой деятельностью в жизни ученого, которая в какой-то момент заслонила собой все остальное, стала популяризация науки. Сам Саган в книге «Мозг Брока» так объяснял свой поворот в эту область: «У людей есть огромный неудовлетворенный интерес к глубоким научным вопросам. Популярность псевдонауки — это укор школам, прессе и коммерческому телевидению за скудость, сухость и неэффективность научного образования , и нам, ученым, за то, что мы не стремимся популяризовать нашу сферу деятельности».

Для научной проповеди (современники часто критиковали его за то, что науку он превратил едва ли не в религиозный культ) Саган использовал любые доступные на тот момент средства. Он часто выступал на телевидении. Чуть ли каждый год выпускал новую книгу. Писал бесчисленные статьи и давал столь же бесчисленные интервью.

Но главным его детищем стал телесериал «Космос: персональное путешествие», снятый киностудией Wаrner Brothers по одноименной книге, написанной Саганом в 1985 году.

Эпизод из сериала «Космос» Карла Сагана

Этот проект не только принес ученому еще большую известность, но и перевернул само представление о том, как можно снимать научно-популярные фильмы о космосе — так, чтобы они привлекали многомиллионную аудиторию по всему миру.

4 июля 1997 года на Марсе высадился самоходный ровер «Sojourner». На протяжении трех месяцев он передавал на Землю изображения с поверхности красной планеты, превратив эти снимки в едва ли не главный инфоповод того лета. Одним из главных инициаторов этой миссии вновь оказался Карл Саган. Правда, до самой высадки дожить ему было не суждено. Самый страстный космический мечтатель XX века умер в декабре 1996 года, удостоившись памятной таблички, которая стоит теперь на Марсе.

«Мы вошли, почти не заметив этого, в эпоху самых беспрецедентных исследований и открытий со времен Ренессанса, — писал Карл Саган в «Мозге Брока». — Мне кажется, что практическая польза сравнительной планетологии для наук, изучающих Землю, ощущение приключения, которое вызывает исследование других миров у общества, почти лишенного возможности приключений, философский смысл поиска космической перспективы — вот чем запомнится наше время в конечном итоге. Спустя столетия, когда наши насущные политические и социальные проблемы будут казаться такими же далекими, какими кажутся нам сейчас проблемы войны за австрийское наследство, наше время, возможно, будут вспоминать главным образом за один факт: это была эпоха, когда население Земли впервые вступило в контакт с окружающим космосом».

Влияние космоса на Землю и жизнь людей

Люди во все времена пытались постичь загадки космоса и изучить его влияние на земную жизнь. Однако, даже с появлением современной техники влияние космоса на планету Земля изучено недостаточно. Самая ближайшая часть космоса – это Солнечная система. Именно о ее воздействии известно более всего.

  1. Под влиянием космоса происходит притяжение Луны, Солнца и Земли, и осуществляются приливно-отливные явления в Мировом океане. В морях и океанах два раза в сутки вода поднимается, заливая низкие берега, и два раза опускается. Такие подъем и спад воды называются приливами и отливами.

Это воздействие космоса на планету Земля человек научился использовать в своей жизни. Приливы и отливы дают людям бесплатную энергию, которая вырабатывается на экологически чистых предприятиях – приливных гидроэлектростанциях.

Приливная электростанция во Франции

  1. Влияние космоса проявляется также в поступлении тепла на нашу планету. Эту энергию мы получаем от Солнца, которая служит источником тепла и основным двигателем процессов, происходящих на планете. Без этого мы и другие живые организмы не смогли бы существовать.

Олень 

Во все края исходит излучение от небесного светила. При остывании Солнца наш мир окунется в темноту. Не будет тепла, и живые организмы погибнут от холода. Наступила бы еще одна эпоха оледенения.

Существует и другая сторона влияния Солнца из космоса на Землю. Ее излучение содержит в себе большое количество ультрафиолета. Наша планета защищена озоновым экраном, через который проникает лишь небольшая доля ультрафиолетового излучения.

При всем при этом, если в этом экране будут дыры, то живые организмы получат ожоги различной тяжести. Человек оказывает большое влияние на космос, и постепенно озоновый экран истончается. Этому способствует загрязнение нашего места обитания. Поэтому необходимо решать экологические проблемы на нашей планете для сохранения жизни.

  1. Солнце посылает на Землю потоки заряженных частиц. Из глубин космоса в верхние слои земной атмосферы проникают невидимые глазом лучи, которые оказывают влияние на жизнь людей. Эти потоки порождают на Земле магнитные бури, полярные сияния и так далее.

Во многом на организм человека оказывают влияние магнитные бури, зарождающиеся в космосе.

На них обычно реагируют люди с заболеваниями сердечно-сосудистой и нервной систем. У них при этом могут появляться головные боли, повышается или понижается артериальное давление, наступает быстрая утомляемость, могут быть обмороки.

  1. Земля в силу всемирного тяготения проявляет свое влияние на небесные тела, и другие небесные тела из космоса воздействуют на ее жизнь. Например, на поверхность Земли могут падать метеориты, принося разрушения. В 1908 году это произошло с Тунгусским метеоритом, который образовал при падении огромный кратер, и вследствие взрыва были уничтожены в этом районе деревья.

Влияние дальнего космоса на жизнь людей и планеты Земля не изучено достаточно хорошо. Человечество издавна изучает Вселенную и ее интересует вопрос: а есть ли жизнь на других планетах? Пока есть только предположения ученых, что на каждый миллион звезд приходится одна обитаемая планета. Возможно в ближайшем будущем эти тайны и загадки Вселенной будут разгаданы.

Что такое невесомость и бывает ли она на Земле

Невесомость не равно антигравитация. Это популярное заблуждение. В 400 км от Земли, где со скоростью почти 8 км/с летит Международная космическая станция (МКС), сила притяжения сохраняется на 90% от привычной. Космонавты и предметы парят в воздухе, потому что вместе с МКС находятся в состоянии свободного падения, одновременно опускаясь и смещаясь в сторону. Наша планета их постоянно притягивает: корабль непременно рухнул бы, но поскольку Земля круглая, сохраняется орбитальное движение и постоянная высота. За счет формы планеты МКС постоянно «промахивается» мимо поверхности и продолжает двигаться по орбите дальше. Иначе говоря, падает и не может упасть.

Эффект свободного падения можно ощутить на аттракционах вроде «американских горок» или в скоростном лифте, который стремительно спускается с высокого этажа. На секунды они дарят состояние невесомости или, как ее еще принято называть, микрогравитации.

На некоторых аттракционах высота сначала набирается, а потом резко сбрасывается, вызывая ощущение свободного падения или невесомости. Горки Goliath (Six Flags Great America)

(Фото: June Ryan Lowry for TIME)

Чуть дольше — около 25 секунд — в невесомости можно оказаться в специальном самолете-лаборатории ИЛ-76 МДК. Он поднимается до 6 тыс. метров, после за 15 секунд с резким ускорением под углом 45º набирает высоту до 9 тыс. метров, а потом по плавной дуге (баллистической траектории) при отключенном моторе уходит вниз. В этот момент и наступает невесомость. На высоте 6 тыс. метров двигатели снова заводят и самолет переводится в обычный горизонтальный полет. Пилот выполняет такие «горки» (так называемые параболы Кеплера) 10-15 раз, он удерживает штурвал, не допуская даже малейших отклонений, что физически очень непросто.

Взлетает ИЛ-76 МДК с военного аэродрома «Чкаловский» в Подмосковье. Поучаствовать может любой более-менее здоровый человек, этим занимаются специальные коммерческие агентства, стоимость полета — ₽280 тыс.

В 2016 году альтернативная рок-группа Ok Go из Чикаго сняла в ИЛ-76 МДК клип на песню Upside down and Inside Out. Это первое профессиональное музыкальное видео в условиях невесомости. Самолет-лаборатория имитировал салон пассажирского S7 Airlines, роль стюардесс исполняли многократные призеры чемпионатов по художественной гимнастике Анастасия Бурдина и Татьяна Мартынова.

Для съемок клипа потребовался 21 полет или 2 часа 15 минут невесомости — больше, чем стандартная норма космонавтов в процессе подготовки.

Темы исследовательских работ и проектов о самолетах и авиации

Примерные темы проектов об авиации:
Авиация. Модели самолетов
Америка — пример прогресса
«Апач» против «Ночного охотника»
Самолет и аэродинамика
Аэробус A-380
Аэродинамика
Аэроплан Александра Фёдоровича Можайского.
Боинг 747
Бумажные самолётики — полётные качества
Валерий Павлович Чкалов
Воздушное пространство Украины
Всевысотный многоцелевой фронтовой истребитель.
Гражданская авиация. Авиационные спасатели
Д.И. Менделеев – исследователь воздухоплавания.
Дальнемагистральный самолет Ил-96-300
Золотой век воздухоплавания
Из истории летательных аппаратов
Изготовление радиоуправляемой модели самолета
Из чего состоит след самолёта
Исследование модельных свойств различных моделей бумажных самолетов.
История воздухоплавания. От Икара до…
Как они улетали из плена?
Как человек использует летательные аппараты?
Классификация летательных аппаратов
Кордовая пилотажная модель самолета «Luftmeister»
Летчики не умирают, они улетают навсегда
Лётчиками не рождаются, лётчиками становятся!
Малая авиация разных поколений
Мне бы в небо! Малая авиация
Модели авиационной техники
Полное описание самолётов
Почему летает воздушный змей?
Почему летают самолеты
Проблемы малой авиации (авиации общего назначения)
Проверка жизнеспособности летательного аппарата. Крылья.
Путешествие в воздухе
Путь в небо
Самолет на солнечных батареях.
Самолеты строим сами
Самолёты
Самолёты времён Великой Отечественной войны.
Страницы истории создания летательных аппаратов.
Теоретические расчеты легкомоторного самолета РА1.
Умели ли динозавры летать?
Что такое дирижабль
Развитие авиации в Украине.

Темы исследовательских работ и проектов о Внеземном (НЛО)

Внеземное (НЛО)
Внеземная жизнь
Внеземные цивилизации
Внеземные цивилизации — проблемы поиска
Голубая кровь: миф или реальность?
Жизнь во Вселенной
Загадочный мир инопланетян
Земное и неземное: факты и свидетельства, фантазии и размышления…
НЛО — загадка Вселенной
НЛО — загадка нашей планеты
НЛО. Миф или реальность
НЛО: что, откуда и зачем?
Мифы и гипотезы о происхождении НЛО
Может быть, мы не одни?
Одиноки ли мы во вселенной?
Почему мы принимаем НЛО за корабли инопланетян?
Разум вне Земли: существует ли он?
Солнце и Земля во Вселенной. Есть ли жизнь на другой планете?
Таинственные обитатели космоса.

Если Вы хотите разместить ссылку на страницу Тем исследовательских работ по астрономии, установите у себя на сайте или форуме один из следующих кодов:

Код ссылки на эту страницу:<a href=»http://obuchonok.ru/node/423″ target=»_blank»>Темы для исследовательских работ по астрономии</a>

Код ссылки на форум:[URL=http://obuchonok.ru/node/423]Темы исследовательских работ по астрономии

Жизнь на Марсе

Так что же происходит с нашим мозгом в космосе?

Один из экспериментов NASA по нейрокогнитивной эффективности сравнивал мозг космонавтов до и после пребывания на МКС в течение шести месяцев, используя сканирование FMRI. Ученые обнаружили снижение связанности моторных и вестибулярных областей мозга. Они необходимы для координации движения у космонавтов, осуществивших длительные космические полеты.

В условиях невесомости мозг продолжает посылать такие сигналы телу, как если бы оно находилось в нормальных условиях гравитации. И тогда тело начинает думать, что оно падает или находится в перевернутом положении. Через некоторое время мозг более или менее приспосабливается к новой среде. Но при возвращении на Землю изменение рефлексов может вызвать длительные проблемы.

Это важно для государственной безопасности

Не зря мы выводим в космос сотни спутников

Ведущие мировые страны должны обнаруживать и предотвращать враждебные намерения или террористические группы, которые могут развернуть оружие в космосе или атаковать навигационные, коммуникационные спутники и спутники наблюдения. И хотя США, Россия и Китай в 1967 году заключили договор о неприкосновенности территории в космосе, на нее могут позариться другие страны. И не факт, что договоры прошлого можно пересмотреть.

Даже если эти ведущие страны в большей части освоят ближайший космос, им нужно будет быть уверенными в том, что компании могут добывать полезные ископаемые на Луне или астероидах, не переживая, что их будут терроризировать или узурпировать

Очень важно настроить дипломатические каналы в космосе, с возможным военным использованием

Tesla Motors

На Марсе нет кислорода, а значит, транспорт там может быть только электрическим. Именно поэтому в Пало-Альто (Калифорния) в 2003 году была основана Tesla Motors. Маск возглавил компанию в 2008-м, сделав ее крупнейшим автопроизводителем мира. В Tesla Motors работают инженеры, которые занимались созданием американских марсоходов.

Цель: сделать электрический транспорт массовым.

Достижения: в 2020 году в мире было продано почти 500 тыс. электромобилей Tesla. Налажен выпуск четырех моделей, идет разработка внедорожника Cybertruck, родстера и грузовика Semi. Сеть заправок Tesla Supercharger насчитывает более 2000 станций. Отрабатывается и частично применяется система беспилотного управления Tesla Autopilot.

Частные полеты в космос

Частные космические путешествия уже сейчас не кажутся сказкой. Первый космический турист Дэннис Тито отправился на МКС еще в 2001 году. С того момента путешественниками стали еще семь человек. Один из них — американец Чарльз Симони — побывал в космосе дважды.

В будущем ожидается полноценное развитие этой отрасли. NASA планирует открыть туристический сектор на МКС и отправлять на станцию до двух коротких миссий в год. Ведомство идет на сотрудничество с частными компаниями и совместно со SpaceX планирует коммерческие полеты на орбиту уже в 2021 году. Трое туристов в сопровождении профессионального астронавта проведут на МКС восемь дней.

Другие частные компании, такие как Blue Origin и Virgin Galactic, развивают суборбитальные космические полеты. Путешественники такого корабля облетят планету без выхода на орбиту искусственного спутника Земли и вернутся обратно. Один полет займет порядка десяти минут.

Пробный суборбитальный полет компании Blue Origin с манекеном на месте пассажира

Корабли для космического туризма только начинают развиваться. Можно предположить, что к 2081 году полеты на ракете станут такой же обыденностью, как на самолете. Люди смогут летать вокруг Земли по выходным, отправляться на МКС в отпуск, парить в невесомости и наслаждаться видом сквозь окно иллюминатора.

Людям нужно утолять жажду исследований

Наши первобытные предки распространились из Восточной Африки по всей планете, и с тех пор мы не останавливаем движением. Мы ищем свежие территории за пределами Земли, поэтому единственный способ утолить это первобытное желание — отправиться в межзвездное путешествие на несколько поколений.

В 2007 году бывший администратор NASA Майкл Гриффин (на фото выше) провел различие между «приемлемыми причинами» и «реальными причинами» освоения космоса. Приемлемые причины могли бы включать экономические и национальные преимущества. Но реальные причины будут включать такие понятия, как любопытство, соревнование и создание наследия.

Частицы, сводящие с ума

Радиационные проблемы у экипажей, отправляющихся на Марс, начнутся еще у Земли. Корабль массой 100 или более тонн придется долго разгонять по околоземной орбите, и часть этой траектории пройдет внутри радиационных поясов. Это уже не часы, а дни и недели. Дальше – выход за пределы магнитосферы и галактическое излучение в его первозданной форме, много тяжелых заряженных частиц, воздействие которых под «зонтиком» магнитного поля Земли ощущается мало.

«Проблема в том, – говорит Вячеслав Шуршаков, – что влияние частиц на критические органы человеческого организма (например, нервную систему) сегодня мало изучено. Возможно, радиация станет причиной потери памяти у космонавта, вызовет ненормальные поведенческие реакции, агрессию. И очень вероятно, что эти эффекты не будут привязаны к конкретной дозе. Пока не накоплено достаточно данных по существованию живых организмов за пределами магнитного поля Земли, отправляться в длительные космические экспедиции очень рискованно».

Когда специалисты по радиационной безопасности предлагают конструкторам космических аппаратов усилить биозащиту, те отвечают, казалось бы, вполне рациональным вопросом: «А в чем проблема? Разве кто-то из космонавтов умер от лучевой болезни?» К сожалению, полученные на борту даже не звездолетов будущего, а привычной нам МКС дозы радиации хоть и вписываются в нормативы, но вовсе не безобидны.

Советские космонавты почему-то никогда не жаловались на зрение – видимо, побаиваясь за свою карьеру, но американские данные четко показывают, что космическая радиация повышает риск катаракты, помутнения хрусталика. Исследования крови космонавтов демонстрируют увеличение хромосомных аберраций в лимфоцитах после каждого космического полета, что в медицине считается онкомаркером. В целом сделан вывод о том, что получение в течение жизни допустимой дозы в 1 Зв в среднем укорачивает жизнь на три года.

Чем пахнет космос?

В космосе много странных запахов

Если вы думаете, что, оказавшись в космическом пространстве, вашему носу не придется вкушать его весьма специфичный запах, то вы ошибаетесь. Казалось бы, в космосе нет воздуха. Безвоздушное пространство не может содержать каких-либо ароматов. Так чем же может пахнуть космос? Чем может пахнуть пустота? Со слов летавших людей, космос пахнет жареным стейком, приправленным горящим металлом и порохом. По словам некоторых российских космонавтов, космос воняет горелой помойкой. Американский астронавт Доналд Рой Петтит в свое время говорил, что лучшим описанием космического запаха будет прилагательное «металлический».

Разумеется, понюхать космос в его естественной форме и среде абсолютно невозможно, поэтому ощутить всю гамму окружающих ароматов человек может лишь в атмосфере космического аппарата, например, находясь в космическом корабле или на борту орбитальной станции. Но запахи ведь откуда-то берутся?

Специалисты говорят, что запах может вызываться всем тем, что может его создавать внутри закрытого помещения: обшивка, приборы, продукты питания, отходы жизнедеятельности, человеческий пот и кожа, а также всевозможные продукты горения в результате форс-мажорных ситуаций вроде пожара или поломки системы кондиционирования. Помимо этого, непередаваемый аромат может быть принесен с собой прямо из открытого космоса, особенно если астронавту довелось работать поблизости с двигателями корабля. В этом случае на скафандре остаются смолоподобные остатки выхлопов, от которых весьма сложно избавиться.

Проблемы со зрением

Зрение в космосе размывается

После того, как вы проведете очень много времени в космосе, ваше зрение начнет становиться размытым. Задняя часть глазного яблока станет изменяться, приобретая более плоскую форму, некоторые изменения ожидают и вашу сетчатку. Среди 300 астронавтов, которые успели побывать в космосе до вас, примерно у 23 процентов наблюдались проблемы со зрением при недлительных полетах и примерно у 49 процентов — при длительных. Если мы когда-нибудь будем переселяться на другие планеты, то примерно у половины из нас будут наблюдаться аналогичные проблемы со зрением. И поверьте, это лишь самая незначительная «беда», которая будет нас ожидать. Мы еще не добрались до космического излучения…

Когда вы находитесь в состоянии невесомости, жидкости, вырабатываемые вашим организмом, начинают приливать в верхнюю часть тела, что приводит к повышению внутричерепного давления, которое начинает давить на ваши зрительные нервы. Совсем чуть-чуть. Беспокоиться особо, конечно, не стоит, в конце концов, многим астронавтам приходится это испытывать в течение множества лет. Но эффект как минимум неприятный. Кстати, в некоторых случаях могут наблюдаться так называемые визуальные артефакты (блики, мерцание, «мушки»). В общем, для многих из нас длительное космическое путешествие может обернуться настоящей рейв-вечеринкой.

Новый вид человека

Закономерно предположить, что представители отважной корпорации космонавтов в будущем станут чем-то отличаться от иных специалистов уже по своей архитектонике, не теряя, конечно, общечеловеческих свойств. Не с них ли, разведчиков Вселенной, начнется новый этап эволюции Homo sapiens? Возможно, предположение это кое-кому покажется слишком смелым, но оно отнюдь не беспочвенно

И, разумеется, во время многолетнего полета к неизведанным галактикам подобные изменения генетической структуры не могут не отразиться как на самих космонавтах, так и на их потомстве.

Американский ученый Л. Д. Проктор, выступая на симпозиуме, посвященном проблемам научного прогнозирования, призывал самым тщательным образом рассмотреть вопрос о желательности участия инженеров в создании «нового типа» человека. Он предвидел, что космонавт станет человеком, по своим физическим и психическим свойствам сделанным «на заказ». Самыми необходимыми органами чувств в космосе будут глаза, немалая роль отводится и осязанию.

В то же время, из-за влияния космоса на человека и отсутствия атмосферы, через которую проводится звук, органы слуха, окажутся для космонавта практически бесполезными. Будут отсутствовать и такие привычные для летчика параметры, как линия горизонта, положение вертикали. И на земле зубная боль еще никому не доставляла удовольствия, а уж в условиях космического полета она может привести к срыву всего грандиозного предприятия.

Поэтому в настоящее время космонавтам рекомендуется удалять все подозрительные зубы и, в частности, не очень-то вообще нужные зубы мудрости. Предполагается, что в длительных космических полетах порча зубов может быть предотвращена более редкими приемами пищи.

Как видим, космос напрямую влияет на человека и предъявляет к человеку свои требования, ставит нас перед необходимостью меняться. И не только один космос…

НравитсяНе нравится

На чем основана жизнь

Хотя мы не можем быть уверены, что вся жизнь основана на углероде, как у нас на Земле, есть все основания полагать, что так и есть. Углерод намного более гибкий строительный блок для сложных молекул, чем тот же кремний, второй по популярности теоретический базис для жизни. Ученые любят рассуждать о том, какой могла бы жить инопланетная биохимия на основе кремния, в первую очередь.

Астробиолог Чарльз Кокелл из Университета Эдинбурга в Великобритании считает, что основа жизни на Земле — углерод и необходимость воды — «отражает универсальную норму». Он признает, что его взгляд несколько консервативен, а это наука, как правило, отвергает. Но давайте возьмем условную жизнь на углероде. Как она могла бы зародиться в условиях глубокого космоса?

Углерод, вода, аминокислоты…. Это все, что необходимо для возникновения жизни?

С химической основой все понятно. Как и сахара, жизни на Земле нужны аминокислоты, строительные блоки белков. Но мы знаем, что они могут быть образованы и в космическом пространстве, поскольку их находят в «примитивных» метеоритах, которые никогда не видели поверхности планеты.

Они могут появляться в ледяных гранулах в процессе химической реакции под названием синтез Штреккера, названного в честь немецкого химика 19 века, который его открыл. В этой реакции участвуют простые органические молекулы, кетоны или альдегиды, в сочетании с цианистым водородом и аммиаком. В качестве альтернативы для инициации предлагается химия в сочетании с ультрафиолетовым светом.

На первый взгляд кажется, будто этим реакциям нет места в глубоком космосе, поскольку нет источников тепла или света, чтобы их подтолкнуть. Молекулы, которые сталкиваются между собой в холодных, темных условиях, не имеют достаточно энергии, чтобы началась химическая реакция. Они словно пытаются перепрыгнуть барьер, который слишком высок для них.

Но в 1970-х годах советский химик Виталий Гольданский показал обратное. Некоторые химические вещества могут реагировать даже будучи охлажденными до температуры в четыре градуса выше абсолютного нуля — это почти как температура самого космоса. Все, что им нужно, это помочь высокоэнергетическим излучением вроде гамма-лучей или электронных лучей — космических лучей, которые проносятся через весь космос.

Полимерные цепочки из молекул углерода

При таких условиях, как обнаружил Гольданский, формальдегид, распространенная в молекулярных облаках молекула на основе углерода, может собираться в полимерные цепочки в несколько сотен молекул длиной. Гольданский полагал, что такие космические реакции могли бы помочь молекулярным строительным бокам жизни собраться из простых ингредиентов, цианистого водорода, аммиака и воды.

Заставить же подобные молекулы слиться в более сложные формы намного труднее. Высокоэнергетическое излучение, которое могло помочь начаться первым реакциям, теперь становится проблемой. Ультрафиолет и другие формы излучения могут вызывать реакции, подобные тем, что продемонстрировала Майнерт. Но Кокелл говорит, что они будут так же разбивать молекулы, как и собирать. Возможные биомолекулы — предшественники белков и РНК, например, — будут разбиваться на части быстрее, чем производиться.

Найдем ли мы когда-нибудь жизнь еще на какой-то планете или в космическом пространстве?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector