§ 8. воздушные массы и климатические пояса
Содержание:
Движение воздушных масс
И так, мы узнали, что такое воздушные массы на нашей планете. Теперь давайте поговорим о том, как они перемещаются. Стоит ещё сказать, что движение атмосферы оказывает сильное воздействие на климат местности.
Введём новое понятие: циркуляция атмосферы. По сути, это движение всей атмосферы. Сюда входят, как локальные ветра, так и муссоны, пассаты и так далее. Течения в атмосфере могут быть небольшими: от 0-100 метров, так и достигать в размерах нескольких десятков километров. Кстати, всё выше перечисленное относится только к тропосфере. Если говорить про другие области воздушной оболочки нашей планеты, например, стратосферу, то там немного всё иначе.
Существует ещё и общая циркуляция атмосферы — это такая система, в которой находятся замкнутые движения тропосферы. По масштабам такие движения можно сравнить с целым полушарием, либо же всей планетой. Такое устройство воздушных масс приводит к переносу вещества и энергии из одной области в другую.
На нашей планете существует множество разновидностей передвижения воздушной массы. Самые мелкие — это местные ветры, по своим размерам они могут достигать 10-100 метров. Кроме них существуют огромные воздушные массы такие, как циклоны, антициклоны, пассаты, муссоны и так далее. Их размеры достигают нескольких километров. Первое описание циркуляции воздушной массы составили ещё 20 лет назад. Конечно, та схема была довольно просто и содержала ошибки и недочёты, однако, на её основе создали современную схему циркуляции.
Случаи
AM0
Спектр вне атмосферы, аппроксимируемый черным телом с температурой 5800 К, обозначается как «AM0», что означает «нулевые атмосферы». Солнечные элементы, используемые для космических энергетических приложений, например, на спутниках связи , обычно характеризуются с помощью AM0.
AM1
Спектр после прохождения через атмосферу до уровня моря, когда солнце находится прямо над головой, по определению называется «AM1». Это означает «одна атмосфера». AM1 ( = 0 °) — AM1.1 ( = 25 °) — полезный диапазон для оценки характеристик солнечных элементов в экваториальных и тропических регионах.
z{\ displaystyle z}z{\ displaystyle z}
AM1.5
Солнечные панели обычно не работают при толщине ровно одной атмосферы: если солнце находится под углом к поверхности Земли, эффективная толщина будет больше. Многие из основных населенных пунктов мира, а, следовательно, и солнечные установки и промышленность в Европе, Китае, Японии, Соединенных Штатах Америки и других местах (включая северную Индию, юг Африки и Австралию) расположены в умеренных широтах. Поэтому число AM, представляющее спектр в средних широтах, гораздо более распространено.
«AM1,5», толщина 1,5 атмосферы, соответствует зенитному углу Солнца = 48,2 °. В то время как летнее значение AM для средних широт в середине дня составляет менее 1,5, более высокие значения применяются утром и вечером, а также в другое время года. Следовательно, AM1.5 полезен для представления общего годового среднего значения для средних широт. Конкретное значение 1,5 было выбрано в 1970-х годах для целей стандартизации на основе анализа данных солнечной радиации на территории Соединенных Штатов. С тех пор солнечная промышленность использует AM1.5 для всех стандартизированных испытаний или оценок наземных солнечных элементов или модулей, включая те, которые используются в концентрирующих системах. Последние стандарты AM1.5, относящиеся к фотоэлектрическим приложениям, — это ASTM G-173 и IEC 60904, все они получены на основе моделирования, полученного с помощью кода SMARTS .
z{\ displaystyle z}
Освещенность для дневного света ( эта версия ) при AM1.5 составляет 109 870 люкс (соответствует 1000,4 Вт / м 2 для спектра AM 1.5 ).
AM2 ~ 3
AM2 ( = 60 °) — AM3 ( = 70 °) — полезный диапазон для оценки общей средней производительности солнечных элементов, установленных в высоких широтах, например, в Северной Европе. Аналогично AM2 — AM3 полезны для оценки зимних характеристик в умеренных широтах, например, коэффициент воздушной массы больше 2 в любое время дня зимой на широтах до 37 °.
z{\ displaystyle z}z{\ displaystyle z}
AM38
AM38 обычно считается воздушной массой в горизонтальном направлении ( = 90 °) на уровне моря. Однако на практике существует высокая степень изменчивости интенсивности солнечного излучения, полученной под углами, близкими к горизонту, как описано в следующем разделе « .
z{\ displaystyle z}
На больших высотах
Относительная масса воздуха является функция только от зенитного угла Солнца, и , следовательно , не меняется с местным возвышением. И наоборот, абсолютная воздушная масса, равная относительной воздушной массе, умноженной на местное атмосферное давление и деленной на стандартное (на уровне моря) давление, уменьшается с высотой над уровнем моря. Для солнечных панелей, установленных на больших высотах, например в районе Альтиплано , можно использовать более низкие абсолютные числа AM, чем для соответствующей широты на уровне моря: числа AM меньше 1 по направлению к экватору и, соответственно, более низкие числа, чем указано выше для другие широты. Однако этот подход является приблизительным и не рекомендуется. Лучше всего смоделировать фактический спектр на основе относительной воздушной массы (например, 1,5) и реальных атмосферных условий для конкретной высоты исследуемой площадки.
Движение воздуха в атмосфере — почему это происходит
Как и географическая широта, важный климатообразующий фактор – циркуляция атмосферы. Процесс представляет собой движение воздушных масс.
Определение
Воздушными массами называют перемещающиеся в виде одного целого крупные объемы воздуха, находящегося в тропосфере и обладающего конкретными характеристиками по температуре и содержанию влаги, которые определяются особенностями района его образования.
По протяженности воздушные массы могут распространяться на несколько тысяч километров. Высота таких образований достигает верхней границы тропосферы. В зависимости от скорости движения воздушные массы классифицируют на несколько категорий:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут
- движущиеся;
- местные.
Движущиеся массы воздуха, исходя из температурных параметров, подразделяют на:
- теплые;
- холодные.
Теплая воздушная масса перемещается на охлажденную подстилающую поверхность, а холодная – на более теплую поверхность. Местные воздушные массы в течение длительного времени сохраняют стабильность географического положения. Среди них выделяют устойчивые и неустойчивые массы, ориентируясь на сезон, а также сухие и влажные массы. Массы воздуха классифицируют по основным видам:
- экваториальные;
- тропические;
- умеренные;
- арктические или антарктические.
Каждый из перечисленных типов подразделяют на подтипы в зависимости от влажности:
- морские;
- континентальные.
Примечание
Если рассматривать территорию России, то можно отметить формирование морской арктической массы над северными морями (такими, как Баренцево и Белое море). Ее характеристики приближены к континентальной воздушной массе, отличия заключаются в повышенном уровне влажности.
Основной причиной движения воздуха в атмосфере являются перепады давления в ее слоях, которых над поверхностью земли несколько. В нижней части можно наблюдать высокую плотность и концентрацию кислорода. В процессе подъема газообразного вещества при нагреве в нижней части возникает разрежение, стремящееся заполниться смежными слоями. Таким образом, образуются ветры и ураганы, что является следствием перепадов температур днем и вечером.
При отсутствии причины движения воздуха в атмосфере жизнь на Земле была бы невозможна. В таких условиях прекращается жизнедеятельность любого организма. Благодаря ветру, осуществляется размножение растений и животных. Поток воздуха транспортирует облака и представляет собой движущую силу в круговороте воды на планете. С помощью смены климата местность очищается от грязи и микроорганизмов.
Не употребляя пищу, люди способны прожить в течение нескольких недель. При отсутствии воды человек может жить до трех дней. Если воздух отсутствует, то жизнь прекращается, спустя десять минут. Все живые организмы на планете Земля зависят от наличия кислорода, который в свою очередь транспортируется вместе с воздушными массами.
Данный процесс непрерывен и связан со сменой времени суток. Когда солнце скрывается за горизонтом и день сменяется ночью, происходит температурный перепад на поверхности планеты.
В атмосфере в любой момент можно наблюдать перемещение воздуха, который оказывает на поверхность Земли давление силой 1,033 грамм на миллиметр. Такая нагрузка практически не ощущается человеком. Однако, в том случае, когда она направлена не вертикально, а горизонтально, люди воспринимают ее, как ветер. К примеру, на территории жарких стран, благодаря бризу, снижается негативное воздействие от жары, сформированной в пустынях и степях.
Нюансы возникновения
Очагами возникновения масс в большинстве случаев бывают области, в которых происходит опущение воздуха с последующим его горизонтальным распространением. Под такое описание подпадают участки антициклонов.
Антициклонические системы, в отличие от циклонических, зачастую проявляют малоподвижность.
Образование воздушных субстанций происходит, как правило, именно в таких — квазистационарных — областях антициклонов с обширным расположением.
Другие зоны, подходящие под характеристики очага возникновения, — это так называемые термические депрессии размытого типа.
Они формируются над нагретыми районами суши и также отличаются малоподвижностью.
Воздушные массы и их основные типы
Воздушные массы — это крупные массы воздуха тропосферы и нижней стратосферы, которые формируются над определенной территорией суши или океана и обладают относительно однородными свойствами — температурой, влажностью, прозрачностью. Они движутся как одно целое и в одном направлении в системе общей циркуляции атмосферы.
Воздушные массы занимают площадь в тысячи квадратных километров, их мощность (толщина) достигает до 20—25 км. Перемещаясь над поверхностью с иными свойствами, они нагреваются или охлаждаются, увлажняются или становятся суше. Теплой или холодной называют воздушную массу, которая теплее (холоднее) окружающей ее среды. Различают четыре зональных типа воздушных масс в зависимости от районов формирования: экваториальные, тропические, умеренные, арктические (антарктические) воздушные массы (рис. 13). Они отличаются, прежде всего, температурой и влажностью. Все типы воздушных масс, кроме экваториальных, делятся на морские и континентальные в зависимости от характера поверхности, над которой они сформировались.
Экваториальная воздушная масса формируется в экваториальных широтах, поясе пониженного давления. Обладает достаточно высокими температурами и влажностью, близкой к максимальной, и над сушей, и над морем. Континентальная тропическая воздушная масса формируется в центральной части материков в тропических широтах. Она обладает высокой температурой, низкой влажностью, сильной запыленностью. Морская тропическая воздушная масса образуется над океанами в тропических широтах, где преобладают довольно высокие температуры воздуха и отмечается высокая влажность.
Континентальная умеренная воздушная масса формируется над материками в умеренных широтах, господствует в Северном полушарии. Ее свойства изменяются по сезонам. Летом довольно высокая температура и влажность, характерны осадки. Зимой низкие и крайне низкие температуры и невысокая влажность. Морская умеренная воздушная масса формируется над океанами с теплыми течениями в умеренных широтах. Летом она прохладнее, зимой — теплее, отличается значительной влажностью.
Континентальная арктическая (антарктическая) воздушная масса формируется над льдами Арктики и Антарктиды, обладает крайне низкими температурами и небольшой влажностью, высокой прозрачностью. Морская арктическая (антарктическая) воздушная масса образуется над периодически замерзающими морями и океанами, ее температура несколько выше, влажность больше.
Воздушные массы находятся в постоянном движении, при их встрече образуются переходные зоны, или фронты. Атмосферный фронт — пограничная зона между двумя воздушными массами, обладающими разными свойствами. Ширина атмосферного фронта достигает десятков километров. Атмосферные фронты могут быть теплыми и холодными в зависимости от того, какой воздух надвигается на территорию и какой вытесняется (рис. 14). Чаще всего атмосферные фронты возникают в умеренных широтах, где встречаются холодный воздух из полярных широт и теплый из тропических широт.
Прохождение фронта сопровождается изменениями в погоде. Теплый фронт перемещается в сторону холодного воздуха. С ним связаны потепление, слоисто-дождевые облака, приносящие моросящие осадки. Холодный фронт перемещается в сторону теплого воздуха. Он приносит обильные кратковременные ливневые осадки, часто со шквалистыми ветрами и грозами, и похолодание.
Солнечная интенсивность
Интенсивность солнечного излучения в коллекторе уменьшается с увеличением коэффициента воздушной массы, но из-за сложных и переменных атмосферных факторов, а не просто или линейно. Например, почти все высокоэнергетическое излучение удаляется в верхних слоях атмосферы (между AM0 и AM1), поэтому AM2 не вдвое хуже, чем AM1. Кроме того, существует большая изменчивость многих факторов, способствующих ослаблению в атмосфере, таких как водяной пар, аэрозоли, фотохимический смог и эффекты температурных инверсий . В зависимости от уровня загрязнения воздуха общее затухание может изменяться до ± 70% по направлению к горизонту, что сильно влияет на характеристики, особенно в направлении горизонта, где влияние нижних слоев атмосферы многократно усиливается.
Одна приближенная модель для солнечной интенсивности в зависимости от воздушной массы дается следующим образом:
-
язнак равно1.1×яо×0,7(АM0,678){\ displaystyle I = 1,1 \ times I _ {\ mathrm {o}} \ times 0,7 ^ {(AM ^ {0,678})} \,} ( I.1 )
где интенсивность солнечного излучения вне атмосферы Земли = 1,353 кВт / м 2 , а коэффициент 1,1 получен при условии, что диффузная составляющая составляет 10% от прямой составляющей.
яо{\ displaystyle I _ {\ mathrm {o}}}
Эта формула удобно вписывается в средний диапазон ожидаемой изменчивости на основе загрязнения:
z{\ displaystyle z} | ЯВЛЯЮСЬ | диапазон из-за загрязнения | формула ( ) | ASTM G-173 |
---|---|---|---|---|
степень | Вт / м 2 | Вт / м 2 | Вт / м 2 | |
— | 1367 | 1353 | 1347,9 | |
0 ° | 1 | 840 .. 1130 = 990 ± 15% | 1040 | |
23 ° | 1.09 | 800 .. 1110 = 960 ± 16% | 1020 | |
30 ° | 1,15 | 780 .. 1100 = 940 ± 17% | 1010 | |
45 ° | 1,41 | 710 .. 1060 = 880 ± 20% | 950 | |
48,2 ° | 1.5 | 680 .. 1050 = 870 ± 21% | 930 | 1000,4 |
60 ° | 2 | 560 .. 970 = 770 ± 27% | 840 | |
70 ° | 2,9 | 430 .. 880 = 650 ± 34% | 710 | |
75 ° | 3.8 | 330 .. 800 = 560 ± 41% | 620 | |
80 ° | 5,6 | 200 .. 660 = 430 ± 53% | 470 | |
85 ° | 10 | 85 .. 480 = 280 ± 70% | 270 | |
90 ° | 38 | 20 |
Это показывает, что значительная мощность доступна только на нескольких градусах над горизонтом. Например, когда солнце находится более чем на 60 ° над горизонтом ( <30 °), солнечная интенсивность составляет около 1000 Вт / м 2 (из уравнения как показано в приведенной выше таблице), тогда как когда солнце только 15 ° над горизонтом ( = 75 °) солнечная интенсивность все еще составляет около 600 Вт / м 2 или 60% от максимального уровня; и всего лишь на 5 ° над горизонтом все еще 27% от максимума.
z{\ displaystyle z}z{\ displaystyle z}
На больших высотах
Примерная модель увеличения интенсивности с высотой и с точностью до нескольких километров над уровнем моря дается следующим образом:
-
язнак равно1.1×яо×(1-час7.1)0,7(АM)0,678)+час7.1{\ displaystyle I = 1,1 \ times I _ {\ mathrm {o}} \ times [(1-h / 7,1) 0,7 ^ {(AM) ^ {0,678})} + h / 7,1] \,} ( I.2 )
где — высота солнечного коллектора над уровнем моря в км, а — воздушная масса (из ), как если бы коллектор был установлен на уровне моря.
час{\ displaystyle h}АM{\ displaystyle AM}
В качестве альтернативы, учитывая значительную практическую изменчивость, можно применить для оценки AM, используя:
-
АMзнак равно(р+c)2потому что2z+(2р+1+c)(1-c)-(р+c)потому чтоz{\ displaystyle AM = {\ sqrt {(r + c) ^ {2} \ cos ^ {2} z + (2r + 1 + c) (1-c)}} \; — \; (r + c) \ cos z \,} ( А.4 )
где нормированные высоты атмосферы и коллектора соответственно ≈ 708 (см. выше) и .
рзнак равнорEуатм{\ displaystyle r = R _ {\ mathrm {E}} / y _ {\ mathrm {atm}}}cзнак равночасуатм{\ Displaystyle с = ч / у _ {\ mathrm {атм}}}
Затем приведенная выше таблица или соответствующее уравнение ( или или для среднего, загрязненного или чистого воздуха соответственно) могут использоваться для оценки интенсивности по AM обычным способом.
Эти приближения в и подходят для использования только на высотах в несколько километров над уровнем моря, подразумевая, как они это делают, снижение до уровней характеристик AM0 только примерно на 6 и 9 км соответственно. Напротив, большая часть ослабления высокоэнергетических компонентов происходит в озоновом слое — на больших высотах около 30 км. Следовательно, эти приближения подходят только для оценки производительности наземных коллекторов.
Ссылки
Wikimedia Foundation
.
2010
.
Атмосфера неоднородна. В ее составе, особенно вблизи земной поверхности, можно выделить воздушные массы.
Воздушные массы — отдельные крупные объемы воздуха, обладающие определенными общими свойствами (температурой, влажностью, прозрачностью и т.д.) и движущиеся как одно целое. Однако внутри этого объема ветры могут быть разные. Свойства определяются районом ее формирования. Она приобретает их в процессе соприкосновения с подстилающей поверхностью, над которой она формируется или задерживается. Воздушные массы имеют разные свойства. Например, воздух Арктики имеет низкие, а воздух тропиков высокие во все сезоны года, воздух северной существенно отличается от воздуха материка . Горизонтальные размеры воздушных масс огромны, они соизмеримы с материками и океанами или их крупными частями. Выделяют главные () типы воздушных масс, формирующихся в поясах с разным : арктические (), (полярные), тропические и экваториальные. Зональные воздушные массы подразделяются на морские и континентальные — в зависимости от характера подстилающей поверхности в районе их формирования.
Арктический воздух формируется над , а зимой еще и над севером Евразии и . Воздух характеризуется низкой температурой, малым влагосодержанием, хорошей видимостью и устойчивостью. Его вторжения в умеренные широты вызывают значительные и резкие похолодания и обусловливают преимущественно ясную и малооблачную погоду. Арктический воздух подразделяется на следующие разновидности.
Морской арктический воздух (мАв) — формируется в более теплой Европейской , свободной от льда, с более высокой температурой и большим влагосодержанием. Его вторжения на материк зимой вызывают потепление.
Континентальный арктический воздух (кАв) — формируется над Центральной и Восточной ледяной Арктикой и северным побережьем материков (зимой). Воздух имеет очень низкие температуры, низкое влагосодержание. Вторжение кАв на материк обусловливает сильное похолодание при ясной погоде и хорошей видимости.
Аналогом арктического воздуха в Южном полушарии является антарктический воздух, но влияние его распространяется преимущественно на прилегающие морские поверхности, реже — на южную оконечность .
Умеренный (полярный) воздух. Это воздух умеренных широт. В нем также различают два подтипа. Континентальный умеренный воздух (кУв), который формируется над обширными поверхностями материков. Зимой он очень охлажден и устойчив, обычно ясная с крепкими морозами. Летом он сильно прогревается, в нем возникают восходящие токи, образуются , нередко выпадают дожди, наблюдаются . Морской умеренный воздух (мУв) формируется в средних широтах над океанами, западными и переносится на материки. Он характеризуется высокой влажностью и умеренными температурами. Зимой мУв приносит пасмурную погоду, обильные осадки и повышение температуры (оттепели). Летом он также приносит большую , дожди; температура при его вторжении понижается.
Умеренный воздух проникает в полярные, а также субтропические и тропические широты.
Экваториальный воздух формируется в экваториальной зоне из тропического воздуха, приносимого пассатами. Он характеризуется высокими температурами и большой влажностью в течении всего года. Кроме того, эти качества сохраняются и над сушей, и над морем, поэтому на морские и континентальные подтипы экваториальный воздух не подразделяется.
Воздушные массы находятся в непрерывном движении. При этом если воздушные массы движутся в более высокие широты или на более холодную поверхность, их называют теплыми, так как они приносят потепление. Воздушные массы, перемещающиеся в более низкие широты или на более теплую поверхность, называются холодными. Они приносят похолодание.
Перемещаясь в другие географические районы, воздушные массы постепенно меняют свои свойства, прежде всего температуру и , т.е. переходят в воздушные массы другого типа. Процесс превращения воздушных масс из одного типа в другой под влиянием местных условий называется трансформацией. Например, тропический воздух, проникая и в умеренные широты, трансформируется соответственно в экваториальный и умеренный воздух. Морской умеренный воздух, оказавшись в глубине континентов, зимой охлаждается, а летом нагревается и всегда иссушается, превращаясь в континентальный умеренный воздух.
Все воздушный массы связаны между собой в процессе постоянного их перемещения, в процессе тропосферы.
Типы воздушных масс
Воздушные массы представляют собой участки воздуха большого объема и площади в пределах которых основные параметры и свойства (температура, влажность, светопроницаемость и др.) относительно однородны . Они являются компонентном тропосферы, образуя нижние, подвижные ее слои. Формируясь над обширными участками поверхности земли, соответствующими географическим частям мирового океана и континентов, по типу этого участка делятся на две больше группы: морские и континентальные.
Морские формируются над водной поверхностью, над частями мирового океана. Они характеризуются высоким уровнем влажности.
Континентальные, значительно более сухие воздушные массы образуются над материками.
В зависимости от географического положения очага формирования, обуславливающего основные свойства воздушной массы, они также условно делятся на:
- экваториальные;
- тропические;
- умеренные;
- арктические.
Свойства воздушных масс обусловлены типом поверхности, над которым они были изначально сформированы или находятся длительное время. Перемещение воздушных масс над поверхностью Земли, которое происходит постоянно, обуславливает такое явление как смена погоды.
По величине вертикального температурного градиента внутри отдельных слоев воздушных масс их делят на устойчивые и неустойчивые.
Устойчивыми считаются массы с низким температурным градиентом (до 0.5 0 — 0.6 0 на каждые 100 метров), между условно выделенными вертикальными слоями воздуха.
Слои внутри такой массы слабо перемещаются, часто инвертированы, что образует так называемые задерживающие слои. Облака внутри воздушных масс данного типа образуются слоисто-кучевого и кучевого типов, толщиной до 500-600 метров, но могут и не образовываться вовсе. Турбулентная активность низкая, из-за чего частицы пыли или водяной конденсат в зоне влияния таких масс может скапливаться у поверхности земли.
Устойчивые воздушные массы подразделяются на холодные и теплые. Холодные образуются над материковыми поверхностями в холодное время года. Для них типична ясная безветренная морозная погода с небольшим количеством кучевых облаков. Теплые образуются как над морем, так и над материками и перемещаются в области более холодные. В погоде наблюдается слабый ровный, без порывов ветер, большое количество массивных слоисто-кучевых облаков, возможны осадки.
В структуре неустойчивой воздушной массы уверенно можно выделить условные слои, температура и влажность которых существенно различается, из-за чего происходит образование большого количество кучево-дождевых облаков. Слои быстро перемещаются, ветер сильный, порой шквалистый. Характерны грозовые явления и обильные многократные ливневые осадки.
Неустойчивые воздушные массы также могут быть холодными и теплыми. Теплые неустойчивые встречаются над материками преимущественно в теплое время года, но близ морских побережий нередки и в холодное. Холодные неустойчивые — характерны для материков в теплое время года, а над морской поверхностью — в холодное. Как правило, находятся с тыльной стороны циклонов, следующих за холодными фронтами. Особенно характерны для территорий, где в соседствующих регионах с наступлением весны прогревание земной поверхности происходит разными темпами.
Водяной пар в атмосфере
Эту тему лучше прочитать вдумчиво, воображая происходящее
В атмосфере присутствует водяной пар (маленькие частички воды испарившиеся с поверхности водоемов и суши)
От чего зависит испарение:
-
Температура (чем выше температура, тем больше воды испариться, следовательно будет больше водяного пара в атмосфере)
-
Ветра (чем сильнее ветер, тем выше испарение)
-
Рельефа
Чем больше температура — тем больше абсолютная влажность (тем больше водяного пара)
Подсказка!
-
При равном значении температуры: растет относительная влажность и растет количество водяного пара
-
При равном значении водяного пара: растет температура, уменьшается относительная влажность.
-
При равном значении относительной влажности: растет количество водяного пара и растет температура.